
- 姓 名:
- 吳思
- 職 稱:
- 教授、博導(dǎo)
- 研究領(lǐng)域:
- 計(jì)算神經(jīng)科學(xué)、類腦計(jì)算
- 通信地址:
- 北京大學(xué)呂志和樓404
北京大學(xué)心理與認(rèn)知科學(xué)學(xué)院教授、博士生導(dǎo)師,北京大學(xué)麥戈文腦科學(xué)所研究員,北京大學(xué)-清華大學(xué)生命科學(xué)聯(lián)合中心研究員。1987-1995年在北京師范大學(xué)物理系獲得普通物理學(xué)士、廣義相對(duì)論碩士、統(tǒng)計(jì)物理博士。1995-1997年在香港科技大學(xué)、1997-1998年在比利時(shí)林堡大學(xué)、1998-2000年在日本理化學(xué)研究所,從事博士后工作。2001-2003年在英國謝菲爾德大學(xué)計(jì)算系擔(dān)任講師,2003-2008年在英國薩斯克斯大學(xué)信息工程系擔(dān)任高級(jí)講師。2008-2011年在中國科學(xué)院神經(jīng)科學(xué)研究所任研究員、神經(jīng)信息處理課題組組長,入選“百人計(jì)劃”。2011-2017年任北京師范大學(xué)“認(rèn)知神經(jīng)科學(xué)與學(xué)習(xí)”國家重點(diǎn)實(shí)驗(yàn)室教授。研究領(lǐng)域是計(jì)算神經(jīng)科學(xué)和類腦計(jì)算。
吳思教授目前擔(dān)任北京智源人工智能研究院的智源學(xué)者、計(jì)算神經(jīng)科學(xué)國際期刊Frontiers in Computational Neuroscience的共同主編,中國自動(dòng)化學(xué)會(huì)會(huì)士、中國認(rèn)知科學(xué)學(xué)會(huì)理事、中國神經(jīng)科學(xué)學(xué)會(huì)理事、《計(jì)算神經(jīng)科學(xué)與神經(jīng)工程專業(yè)委員會(huì)》主任等。
吳思教授的研究領(lǐng)域?yàn)橛?jì)算神經(jīng)科學(xué)和類腦計(jì)算,通過和認(rèn)知科學(xué)家、神經(jīng)科學(xué)家、信息科學(xué)家等合作,用數(shù)理方法和計(jì)算機(jī)仿真來構(gòu)建神經(jīng)系統(tǒng)加工信息的計(jì)算模型,闡明大腦處理信息的一般性原理,并在此基礎(chǔ)上發(fā)展類腦的人工智能算法。已發(fā)表論文上百篇,包括神經(jīng)科學(xué)的頂級(jí)雜志Neuron,Nature Neuroscience、PNAS、eLfie、J. Neurosci.等,人工智能的頂級(jí)國際會(huì)議NeurIPS等。目前在計(jì)算神經(jīng)科學(xué)領(lǐng)域開展的課題包括:神經(jīng)信息表達(dá)與儲(chǔ)存的正則化模型-連續(xù)吸引子網(wǎng)絡(luò)的計(jì)算性質(zhì)、突觸短時(shí)程可塑性的計(jì)算功能、神經(jīng)反饋的計(jì)算功能、多模態(tài)信息整合的計(jì)算機(jī)制等;在類腦計(jì)算領(lǐng)域開展的課題包括:視覺信息從整體到局部加工的計(jì)算模型、時(shí)空信息加工的計(jì)算模型、運(yùn)動(dòng)目標(biāo)預(yù)測跟蹤的計(jì)算模型等。目前也正研發(fā)計(jì)算神經(jīng)科學(xué)與類腦計(jì)算的科研與教學(xué)的通用軟件平臺(tái)BrainPy。
代表性論文(*通訊作者):
Chaoming Wang#, Tianqiu Zhang#, Sichao He, Hongyaoxing Gu, Shangyang Li, Si Wu*(2024). A differentiable brain simulator bridging brain simulation and brain-inspired computing, ICLR, 2024.
Chu, T., Ji, Z., Zuo, J., Mi, Y., Zhang, W., Huang, T., ... & Wu Si * (2024). Firing rate adaptation affords place cell theta sweeps, phase precession and procession. https://doi.org/10.7554/eLife.87055.1, eLife, 2024, 87055.4.
Chaoming Wang,Tianqiu Zhang,Xiaoyu Chen,Sichao He,Shangyang Li,Si Wu* (2023). BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming, https://doi.org/10.7554/eLife.86365, eLife, 2023,86365.
Xingsi Dong, Wu Si* (2023). Neural Sampling in Hierarchical Exponential-family Energy-based Models, NeurIPS, 2023.
Xiaohan Lin, Liyuan Li, Boxin Shi, Tiejun Huang, Yuanyuan Mi, Wu Si* (2023). Slow and Weak Attractor Computation Embedded in Fast and Strong E-I Balanced Neural Dynamics, NeurIPS, 2023.
Zuo, J., Liu, X., Wu, Y., Wu, S. and Zhang, W.H. *(2023). A Recurrent Neural Circuit Mechanism of Temporal-scaling Equivariant Representation, NeurIPS,2023.
Xiaolong Zou#, Zhikun Chu#, Qinghai Guo, Jie Cheng, Bo Hong, Si Wu, Yuanyuan Mi* (2022). Learning and Processing the Ordinal Information of Temporal Sequences in Recurrent Neural Circuits, NeurIPS, 2023.
Zou, Xiaolong and Ji, Zilong and Zhang, Tianqiu and Huang, Tiejun and Wu Si* (2023). Visual information processing through the interplay between fine and coarse signal pathways, https://doi.org/10.1016/j.neunet.2023.07.048, Neural Networks, 2023,166(692-703).
Zhang, W.H., Wu Si, Josi?, K. and Doiron, B., (2023). Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons, Nature Communications, 2023, 14(1), p.7074.
Liu, X., Zou, X., Ji, Z., Tian, G. Mi, Y., Huang, T., Wong, M.*, & Wu Si* (2022). Neural feedback facilitates rough-to-fine information retrieval, Neural Networks, 2022,151(349-364).
Ang A.Li, Fengchao Wang, Wu Si*, Xiaohui Zhang* (2022). Emergence of probabilistic representation in the neural network of primary visual cortex, iScience, 2022,25(3).
Tianhao Chu, Zilong Ji, Junfeng Zuo, Wenhao Zhang, Tiejun Huang, Yuanyuan Mi, Wu Si* (2022). Oscillatory Tracking of Continuous Attractor Neural Networks Account for Phase Precession and Procession of Hippocampal Place Cells, NeurIPS, 2022.
Xingsi Dong, Zilong Ji, Tianhao Chu, Tiejun Huang, Wenhao Zhang*, Wu Si* (2022). Adaptation Accelerating Sampling-based Bayesian Inference in Attractor Neural Networks, NeurIPS, 2022.
XiaoLong Zou,Tie-Jun Huang, Wu Si* (2022). Towards a New Paradigm for Brain-inspired Computer Vision. DOI:10.1007/s11633-022-1370-z, Machine Intelligence Research, 2022,19(5), P412-424.
Wenhao Zhang*, Yinnian Wu, Si Wu (2022). Translation-equivariant Representation in Recurrent Networks with a Continuous Manifold of Attractors, NeurIPS, 2022.
Xiaohan Lin#, Xiaolong Zou#, Zilong Ji, Tiejun Huang, Si Wu*, Yuanyuan Mi*, A brain-inspired computational model for spatio-temporal information processing, Neural Networks, 2021, 143:74-87.
W. Zhang, H. Wang, A. Chen, Y. Gu, T. S. Lee, KYM Wong*, S. Wu* (2019). Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 8: e43753.
X. Liu, X. Zou, Z. Ji, G. Tian, Y. Mi, T. Huang, KYM Wong, S. Wu* (2019). Push-pull feedback implements hierarchical information retrieval efficiently. NeurIPS, 2019.
W.H. Zhang, S. Wu, B. Doiron, T.S. Lee. A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits. NeurIPS, 2019.
Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang, Guanrui Wang, Zhe Zou, Zhenzhi Wu , Wei He, Feng Chen, Ning Deng, Si Wu, Yu Wang, Yujie Wu, Zheyu Yang, Cheng Ma, Guoqi Li, Wentao Han, Huanglong Li, Huaqiang Wu, Rong Zhao, Yuan Xie, Luping Shi (2019) . Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature v. 572; https://doi.org/10.1038/s41586-019-1424-8. (連續(xù)吸引子模型應(yīng)用在天機(jī)芯片上).
Xiaolan Wang, C.C. Alan Fung, Shaobo Guan, Si Wu*, Michael E. Goldberg, Mingsha Zhang* (2016). Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area. Neuron, 90(2): 400–409.
W. Zhang, A. Chen, M. Rasch* and S. Wu* (2016). Decentralized multi-sensory information integration in neural systems. The Journal of Neuroscience, 36(2):532-547.
W. Zhang, H. Wang, KYM Wong, S. Wu* (2016). “Concurrent” and “Opposite” Neurons: Sisters for Multisensory Integration and Segregation. NeurIPS, 2016.
Wu, S*, Wong, KYM., Fung, CCA., Mi, Y., and Zhang, W. (2016). Continuous attractor neural networks: candidate of a canonical model for neural information representation. F1000 Invited Review, 66(16), 209-226.
Y. Yan, M. Rasch, M. Chen, X. Xiang, M. Huang, S. Wu and W. Li (2014). Perceptual training continuously refines neuronal population codes in primary cortex. Nature Neuroscience17: 1380–1387. doi:10.1038/nn.3805.
Y. Mi, C. C. Alan Fung, K. Y. Michael Wong, S.Wu*(2014).Spike Frequency Adaptation Implements Anticipative Tracking in Continuous Attractor Neural Networks. NeurIPS, 2014.
Y. Mi , X. Liao , X. Huang , L. Zhang , W. Gu, G. Hu* and S. Wu* (2013). Long-Period Rhythmic Synchronous Firing in a Scale-Free Network. Proc. Natl. Acad. Sci. USA 110:E4931-4936.
L. Xiao, M. Zhang, D. Xing, P-J. Liang and S. Wu* (2013). Shift of Encoding Strategy in Retinal Luminance Adaptation: from Firing Rate to Neural Correlation. Journal of Neurophysiology 110:1793-1803. doi:10.1152/jn.00221.2013.
Tsodyks, M. and Wu, S* (2013). Short-term synaptic plasticity. Scholarpedia, 8(10):3153.
C. C. Fung, K. Y. Michael Wong, H. Wang and S. Wu* (2012). Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy and Mobility. Neural Computation 24 (5): 1147-1185, 2012.
C. C.Fung, K.Y.Michael Wong and S. Wu* (2010). A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks. Neural Computation, v.22, p.752-792.
C. C. Fung, K. Y. Michael Wong, H. Wang and S.Wu* (2010). Attractor Dynamics with Synaptic Depression. NeurIPS 2010.
D. Chen, S. Li, Z. Kourtzi and S. Wu* (2010). Behavior-constrained support vector machines for fMRI data analysis. IEEE Trans. Neural Networks. v. 21, 1680-1685.
C. C.Fung, K.Y.Michael Wong and S. Wu* (2008). Tracking Changing Stimuli in Continuous Attractor Neural Networks. NeurIPS 2008.
S. Wu and S. Amari (2005). Computing with Continuous Attractors: Stability and On-Line Aspects. Neural Computation, v.17, 2215-2239.
S. Wu and K. Y. Michael Wong and B. Li. (2002). A Dynamic Call Admission Policy for Precision QoS Guarantee Using Stochastic Control for Mobile Wireless Networks. IEEE/ACM Transactions on Networking, v.10, p.257-271.
S. Wu, S. Amari and H. Nakahara. (2002). Population Coding and Decoding in a Neural Field: A Computational Study. Neural Computation, v14, no.5, p.999-1026.
S. Wu and S. Amari. (2002). Neural Implementation of Bayesian Inference in Population Codes. NeurIPS 2002.
S. Wu, H. Nakahaara, N. Murata and S. Amari. (2000). Population Decoding Based on an Unfaithful Model. NeurIPS 2000.
S. Amari and S. Wu (1999). Improving Support Vector Machine Classifiers by Modifying Kernel Functions. Neural Networks, v.12, p.783-789, 1999.
計(jì)算神經(jīng)科學(xué)與類腦計(jì)算的開源軟件平臺(tái):
BrainPy:https://github.com/PKU-NIP-Lab/BrainPy